

Project number:

2021-1-IE01-KA220-SCH-000027825

Earth Observation & Light Pollution

Age: 12-14

Topics: Light Pollution, Understanding, Mapping, Satellite Data, Spatial-Temporal Patterns, Data Analysis, Visualization, Digital Tools, Student Learning, Q-GIS Introduction.

Resources: Dr. Loukas Katikas (EA)

Authors: Dr. Seda Özdemir-Fritz, Dr. Lothar Kurtze (FTP-Europlanet)

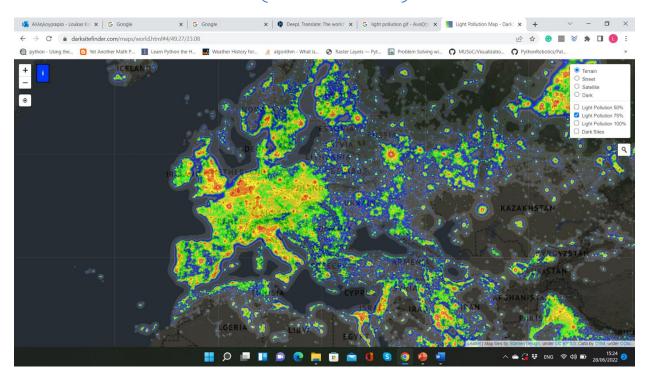
Understanding of Light pollution, observation and detection methods by using digital mapping strategy

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.Project No.2021-1-IE01-KA220-SCH-000027825

0

OBJECTIVES

- Define and Explain Light Pollution
- Identify Various Types of Light Pollution
- Recognize Sources of Light Pollution
- Describe Impact of Light Pollution on Night Sky Visibility
- Conduct Experiment on Changing Light Pollution Patterns
- Apply Scientific Method to Data Collection and Analysis
- Utilize Structured Approach to Validate Results


1.Pre-ACTIVITY: Introduction to Light Pollution (45 minutes)

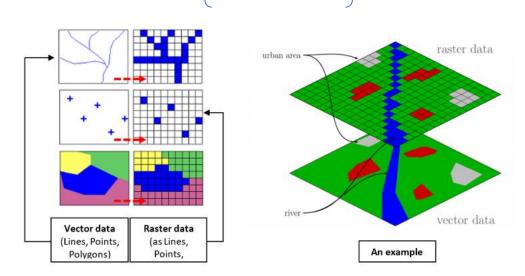
Presenting Questions and Background Exploration (20 minutes):

- Begin with a brainstorm session to explore how light is used in daily life.
- Initiate a discussion on the various ways we rely on light.
- Show a concise 1m. video *explaining light pollution*.

Light Pollution Monitoring and Mapping (20 minutes):

- Pose the question: Can we see Light Pollution from space? Discuss possibilities.
- o Present a video (2 mins) about Light Pollution mapping.
- Introduce the online Geographic Information Systems (GIS) platform Dark Site Finder (<u>https://darksitefinder.com/maps/world.html#7/40.591/22.634</u>).
- Guide students to navigate the map and identify areas with high light pollution.
- Engage in discussions about correlations between light pollution and human activity.

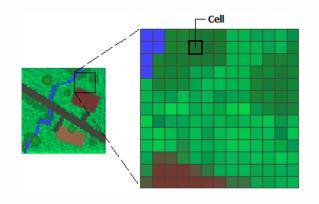
- ⇒ <u>Note to Teachers:</u>
- The map is authentic but slightly enhanced for clarity.
- Prepare for the next step Working with real data and digital tools!


2. Activity: Exploring Light Pollution Patterns Using Real Data and Tools

2.1 Introduction and Data Quantification (Video):

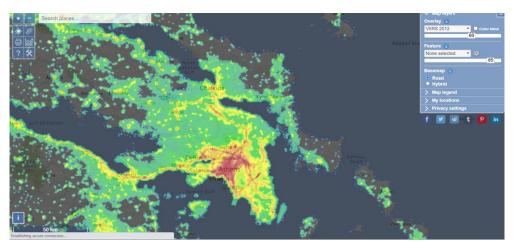
- Start with a brief video introduction.
- Explore how we can measure changes in light pollution using real data.
- Provide a case study background to contextualise the activity.

2.2 Understanding Spatial Data Structures and Modelling:


- Discuss spatial data structures and their significance.
- Introduce raster datasets with an example, like a satellite image depicting light pollution density.
- Define the difference between Vector and Raster Data set (i.e. satellite image) by using the examples e.g. river marks

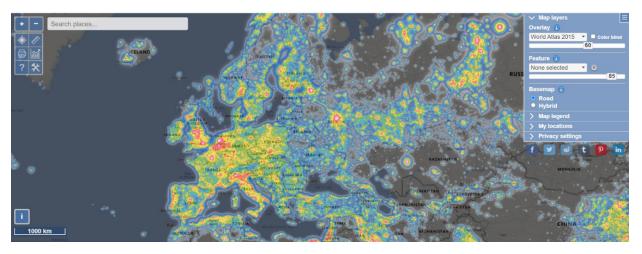
Support Material for Vector and Raster data: https://gisgeography.com/spatial-data-types-

2.3 Managing and Processing Data with GIS:


- Explain the role of Geographic Information Systems (GIS).
- Provide definitions and references for GIS concepts.
- Introducing QGIS software as a tool for analysis.

2.4 Case Study Setup - Data Download and Tool Installation:

 Guide students to download QGIS version 3.18.1. (<u>https://qgis.org/downloads/</u>)



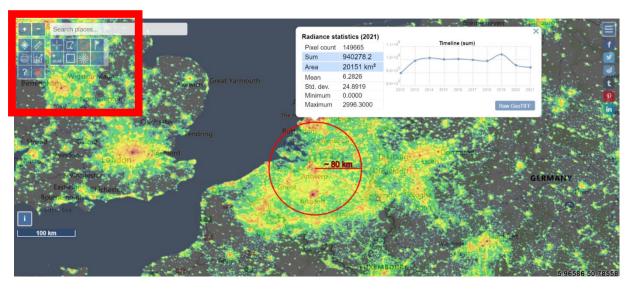
• Highlight the difference between data sources, like the Dark Sky Finder app.

2.5 Exploring the Platform: Light Pollution Mapping (<u>www.lighpollutionmapping.info</u>):

- Give an overview of the platform's capabilities.
- Demonstrate accessing global light pollution levels.
- Explain how to customize views (year, basemap, transparency, etc.).

- Show how to select specific areas and view temporal changes.
- Example: Display the graph of light pollution levels from 2012 to 2021.

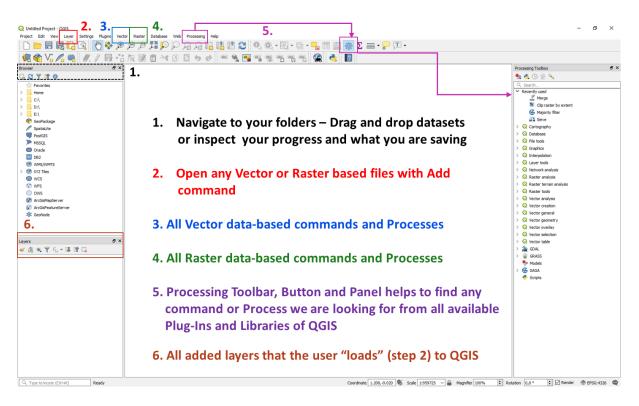
2.6 Data Download and Analysis:


- Describe how to access detailed statistics and country-level data (click the statistics sign in the toolbar-shown with red rectangle).
- Instruct on downloading data for analysis (GeoTiff format).

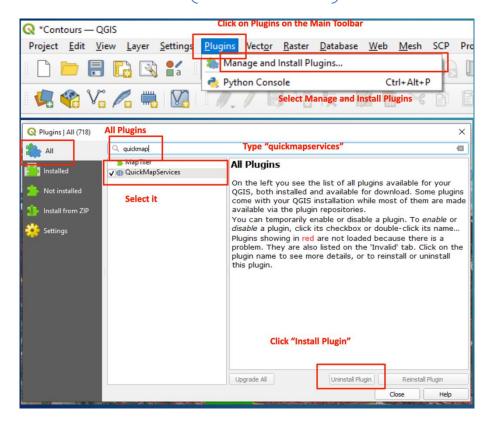
	1.2		1	71 4	A	- 10	لمعم
OA	LL COUNTRIES	OECD OE	EA +UK +CH	G20			
	$\operatorname{Country} \triangledown$	Population	Area (sq. km)	Avg. Sum	Trend	Rad./1k	Avg. Mean
	Austria	8,869,537	83,859.51	253,137	+0.30 %	28.5	0.649
	Belgium	11,473,875	30,790.18	678,162	-0.15 %	59.1	4.74
+	Canada *	37,553,100	10,133,038.69	2,595,954	-1.78 %	69.1	0.22
	Denmark *	5,811,413	48,270.28	156,676	+1.17 %	27.0	0.698
	France	67,009,000	554,494.12	3,508,310	-3.15 %	52.4	1.36
	Germany	83,019,200	360,625.87	1,880,617	-0.27 %	22.7	1.122
1	Greece	10,741,165	144,280.45	763,727	+0.14 %	71.1	1.139
	Ireland	4,857,000	74,321.77	200,591	-2.55 %	41.3	0.58
	Italy	60,359,546	307,441.81	4,541,647	-0.28 %	75.2	3.178
	Luxembourg	613,894	2,581.40	43,896	+0.93 %	71.5	3.660
	Netherlands	17,332,500	38,586.10	941,819	-1.09 %	54.3	5.25
+	Norway *	5,334,762	351,481.18	448,615	-0.06 %	84.1	0.490
	Portugal	10,276,617	93,928.59	1,046,697	-1.85 %	101.9	2.39

urora may interfere in * countries. Read Help on how statistics are calculated.

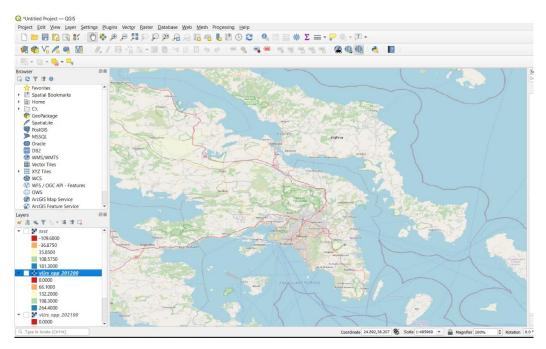
• Download the data by selecting the Tools icon (bottom right and click on the circle to select the respective area)


- Select the circle's radius and left click, the pop-up window presents all descriptions and data of the selected area.
- \circ Guide students to repeat the process for different years (VIIRS 2014 and VIIRS 2021).
- ⇒ Note to Educators:
- This activity empowers students to explore light pollution using real data and GIS tools.
- Encourage thorough data analysis and interpretation.
- ⇒ <u>Concluding Remark</u>: This activity encourages students to delve into practical applications of data analysis and spatial tools to gain insights into light pollution patterns within their region.

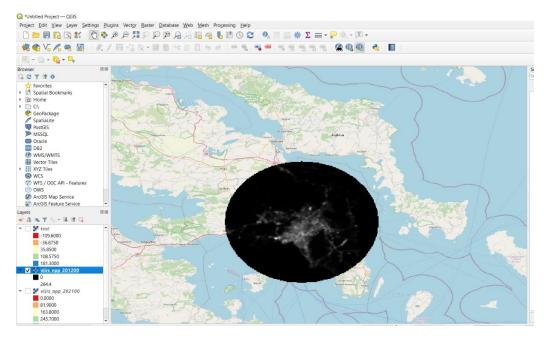
Enjoy facilitating these engaging activities!


3. QGIS PLATFORM OVERVIEW and TECHNICAL GUIDELINES

<u>Step 1</u>


• Loading Data: Data can be loaded in four ways (shown on image)

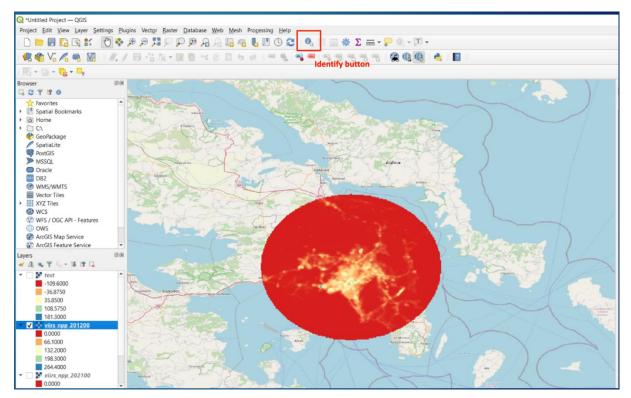
Install required plugins :


 Basemap Loading: Load Basemap using Main Toolbar: Web > quickMapServices > OSM > OSM Standard.

<u>Step 2</u>

Starting the Activity:

- In the initial step, load downloaded Light Pollution files (VIIRS 2012 and 2021) onto QGIS.
- Main toolbar: Layers > Raster Layer > Navigate to folder > Select viirs_npp_201200.tif and viirs_npp_202100.tif.
- Initial map display will be black and white for both images.

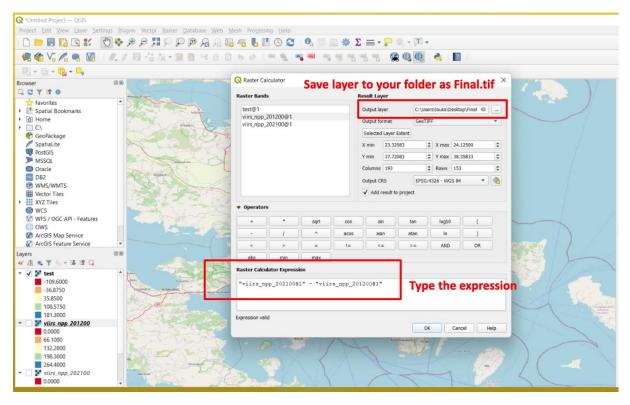


Color Layout Adjustment:

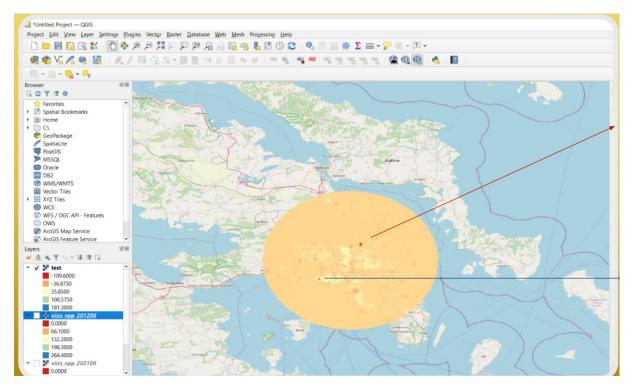
- Modify layout colors using Layer Properties.
- Double-click on .tif image > Symbology > Single-band Pseudocolor > Classify.

🗈 🖿 🔒 🔂 🖎 💕 🦫 🗩	Q Layer Properties — result — Symbology X								
	Q Band Rendering								
🤹 🎕 Vî 🔏 🖏 🔯 👘 🖉	🥡 Information	Render type Singleband pseud	Select Singleband Pseudocolor						
🔣 👻 📑 👻 🌄 👻 🎆 🔎 💌 RGB = 🔤	Source	Band	Band 1 (Gr	iray) 🔹					
Browser	W Jource	Min	-43	Max 43					
C C T 🗊 🕖 Symbology	💐 Symbology	Min / Max Value Settin	gs						
 ☆ Favorites ▲ ▶ ■ Spatial Bookmarks 	Transparency Symbol	nterpolation		Linear 👻					
Project Home	📐 Histogram	Color ramp		·					
▶ @ Home ▶ □ C:\	,	Label unit suffix							
D:\	🞸 Rendering	Value Color	Label						
 Z:\ GeoPackage 	🕓 Temporal	-43	-43	Optionally, you can change coloramp					
SpatiaLite PostGIS	🚵 Pyramids	_							
MSSQL	📝 Metadata	-21.5	-21.5						
Oracle			0						
Layers Ø 🕅	E Legend	0	0						
 ✓ ▲ ● ▼ 5, × ■ ↑ □ 	QGIS Server	21.5	21.5						
▼ ✓ Fresult -43									
-21.5 Double-click		43	43						
0 21.5		ess Classify							
43		Mode Continuous Classes 5							
Corine_2018_clip		Classify 🖶 😑 🧔							
 Corine_1990_clip U2018_CLC2018_V2020_20u1 		Clip out of range values							
▶ □ ▼ U2000_CLC1990_V2020_20u1				Ŧ					
		Style *		OK Cancel Apply Help					

• Identify areas of increased light pollution or differences between years by checking/unchecking maps or using the identify button.



Step 3: Quantifying Changes of Light Pollution Levels

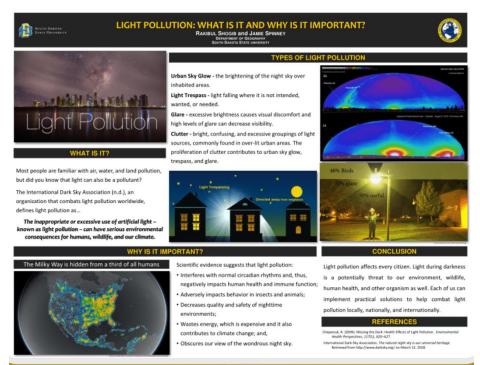

- Compare each pixel's value from viirs_npp_201200.tif and viirs_npp_202100.tif.
- Use the "Raster Calculator" tool for mathematical operations and conditional statements between rasters (images).

Simple Comparison Measure:

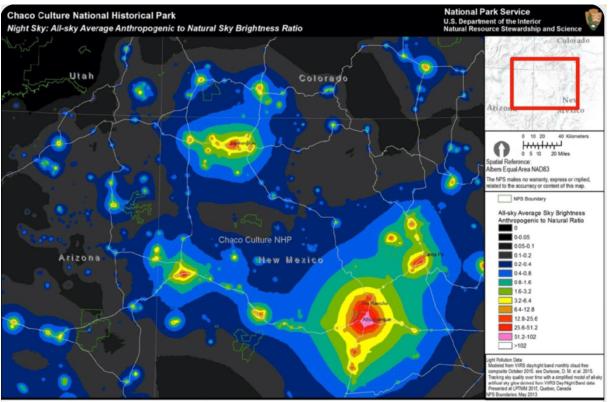
- Subtract pixel values of viirs_npp_201200.tif from viirs_npp_202100.tif.
- Open Raster Calculator via Main Toolbar: Raster > Raster Calculator.
- Enter: "viirs_npp_202100@1" "viirs_npp_201200@1".

- Red areas indicate reduced light pollution levels (2012-2021) Athens Airport -COVID-19.
- Blue areas indicate increased light pollution levels (2012-2021) Piraeus port and Cosco investments.




Results Presentation

- Communicate findings from the analysis.
- \circ $\;$ Share insights on areas with decreased and increased light pollution.
- Discuss observed changes, such as implications of COVID-19 on light pollution levels.


STUDENT TASKS

⇒ Create a flyer to start a campaign or a scientific poster

⇒ Create a map demonstrating light pollution differences in multiple areas and timescales.

NPS Natural Sounds & Night Skies Division and NPS Inventory and Monitoring Program MAS Group 20160509

⇒ Educational Note:

Utilizing the QGIS platform and associated tools, students engage in meaningful analysis and interpretation of real-world spatial data, gaining valuable insights into changing light pollution patterns.

ENJOY THE ACTIVITIES!