

Project number: 2021-1-IE01-KA220-SCH-000027825

Robotic Telescopes

Age group: 10-14

Topics: stellarium, telescope, astronomy, observation, light polution, hands-on activity

Resource: Gustavo Rojas; CliC-PoLiT summerschool 2022

Autor: Dr. Seda Özdemir-Fritz

Using Robotic Telescope:

A robotic telescope is an automated telescope that can be operated remotely, allowing astronomers to observe celestial objects without being physically present at the telescope site. These telescopes are equipped with advanced technology for automated control, data acquisition, and image processing, making them versatile tools for astronomical research and education.

> This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Project No. 2021-1-IE01-KA220-SCH-000027825

CliC-PoLiT

1) Introduction:

Welcome to the exciting world of astronomy and exploration through the lens of robotic telescopes! Imagine having the power to peer into the vastness of the cosmos from the comfort of your own computer. Robotic telescopes, equipped with advanced technology and operated remotely, allow budding astronomers like you to observe celestial objects, capture breathtaking images, and delve into the mysteries of the universe without leaving your desk. This student activity will provide you with a hands-on experience, guiding you through the process of accessing and controlling a robotic telescope, unlocking the wonders of the night sky, and fostering a deeper understanding of the cosmos. Get ready to embark on a celestial journey like never before!

2) Plan your observation with Stellarium:

www.stellarium.org

HOW to use the Stellarium?: More information is provided on the Clic-Polit website!

3) Planning steps:

• Set up location

• Search object

• Check FOV

		View	×
	Sky SSO DSO	*** *** Markings Landscape Starlore Surveys	
	Celestial Sphere		
	Equatorial grid (J2000)	Equator (J2000)	Celestial poles (J2000)
	Ecliptic grid (J2000)		Ecliptic poles (J2000)
	Ecliptic grid (of date)	Ecliptic (of date)	Ecliptic poles (of date)
	🔲 🗌 Azimuthal grid	🔲 🔲 🔲 Horizon	🦲 🔲 Zenith and Nadir
	Galactic grid	Galactic equator	Galactic poles
	🔲 🗌 Supergalactic grid	🔄 🔲 🔲 Supergalactic equator	Supergalactic poles
	📃 🔲 Equinoxes (J2000)	🔲 🗖 🔲 O./C. longitude	📃 🔲 Antisolar point
X	Equinoxes (of date)	📄 🗖 📄 Meridian	Apex points
T	Solstices (J2000)	🔲 🔲 🔲 Prime Vertical	📄 🔲 Circumpolar circles
	Solstices (of date)	Colures	Line thickness
\bigcirc	📕 🗹 Cardinal points	Precession circles	Partition thickness
*e	Center of FOV	Rectangular FOV 4,00 3,00 0,0	Circular FOV 0,1
SE PER.			or planets in the second second
9			

FOV

Name	Telescope Class	Pixel scale "/pix	Field of view	Overhead per frame	Filter options
		(std. binning)			
MuSCAT3	2-meter	0.27 (bin 1x1)	9.1'×9.1'	6s or 46s	SDSS g'r'i'zs fixed
Spectral	2-meter	0.300 (bin 2x2)	10'x10'	19s	18
Sinistro	1-meter	0.389 (bin 1x1)	26'x26'	28 s	21
SBIG 6303	0.4-meter	0.571 (bin 1x1)	29'x19'	14 s	9

• Estimate exposure time

CliC-PoLiT

Estimates for 2-m exposure times

Mag	Exposure time (s)
10	5
11	15
12	40
13	100
14	240
15	600

• Determine best epoch

- Be aware of other factors:
 - Moon
 - Satellites
 - Weather
 - Technical issues

4) Using Faulkes Telescope Project:

a) Registration to Faulkes Telescope Project:

http://www.faulkes-telescope.com/

b) Requesting Images using the LCO Interface https://observe.lco.global/

HOW to use SalsaJ?: More information is provided on the Clic-Polit website!